672 research outputs found

    Punkaharjun toimintayksikön vuosikertomus 2006

    Get PDF

    Pim-1 kinase inhibits STAT5-dependent transcription via its interactions with SOCS1 and SOCS3

    Get PDF
    Signal transducer and activator of transcription 5 (STAT5) plays a critical role in cytokine-induced survival of hematopoietic cells. One of the STAT5 target genes is pim-1, which encodes an oncogenic serine/threonine kinase. Here we demonstrate that Pim-1 inhibits STAT5-dependent transcription in cells responsive to interleukin-3, prolactin, or erythropoietin. Ectopic expression of Pim-1 in cytokine- dependent FDCP1 myeloid cells results in reduced tyrosine phosphorylation and DNA binding of STAT5, indicating that Pim-1 interferes already with the initial steps of STAT5 activation. However, the Pim-1 kinase does not directly phosphorylate or bind to STAT5. By contrast, Pim-1 interacts with suppressor of cytokine signaling 1 (SOCS1) and SOCS3 and potentiates their inhibitory effects on STAT5, most likely via phosphorylation-mediated stabilization of the SOCS proteins. Thus, both Pim and SOCS family proteins may be components of a negative feedback mechanism that allows STAT5 to attenuate its own activity. (C) 2004 by The American Society of Hematology

    Mixed Reality-Based Simulator for Training on Imageless Navigation Skills in Total Hip Replacement Procedures

    Get PDF
    Imageless navigation systems (INS) in orthopaedics have been used to improve the outcomes of several orthopaedic procedures such as total hip replacement [1, 2]. However, the increased surgical times and the associate learning curve discourage surgeons from using navigation systems in their theatres [2]. This paper presents a Mixed Reality (MR) simulator that helps surgeons acquire the infrared based navigation skills before performing it in reality. A group of 7 hip surgeons tried the application, expressing their satisfaction with all the features and confirmed that the simulator represents a cheaper and faster option to train surgeons in the use of INS than the current learning methods

    Janus kinase 2 activation mechanisms revealed by analysis of suppressing mutations

    Get PDF
    Background: Janus kinases (JAKs; JAK1 to JAK3 and tyrosine kinase 2) mediate cytokine signals in the regulation of hematopoiesis and immunity. JAK2 clinical mutations cause myeloproliferative neoplasms and leukemia, and the mutations strongly concentrate in the regulatory pseudokinase domain Janus kinase homology (JH) 2. Current clinical JAK inhibitors target the tyrosine kinase domain and lack mutation and pathway selectivity. Objective: We sought to characterize mechanisms and differences for pathogenic and cytokine-induced JAK2 activation to enable design of novel selective JAK inhibitors. Methods: We performed a systematic analysis of JAK2 activation requirements using structure-guided mutagenesis, cell-signaling assays, microscopy, and biochemical analysis. Results: Distinct structural requirements were identified for activation of different pathogenic mutations. Specifically, the predominant JAK2 mutation, V617F, is the most sensitive to structural perturbations in multiple JH2 elements (C helix [aC], Src homology 2-JH2 linker, and ATP binding site). In contrast, activation of K539L is resistant to most perturbations. Normal cytokine signaling shows distinct differences in activation requirements: JH2 ATP binding site mutations have only a minor effect on signaling, whereasJH2aCmutations reduce homomeric (JAK2-JAK2) erythropoietin signaling and almost completely abrogate heteromeric (JAK2-JAK1) IFN-gamma signaling, potentially by disrupting a dimerization interface on JH2. Conclusions: These results suggest that therapeutic approaches targeting the JH2 ATP binding site and aC could be effective in inhibiting most pathogenic mutations. JH2 ATP site targeting has the potential for reduced side effects by retaining erythropoietin and IFN-gamma functions. Simultaneously, however, we identified the JH2 aC interface as a potential target for pathway-selective JAK inhibitors in patients with diseases with unmutated JAK2, thus providing new insights into the development of novel pharmacologic interventions.Peer reviewe

    Janus kinases to jakinibs : from basic insights to clinical practice

    Get PDF
    Cytokines are critical mediators of diverse immune and inflammatory diseases. Targeting cytokines and cytokine receptors with biologics has revolutionized the treatment of many of these diseases, but targeting intracellular signalling with Janus kinase (JAK) inhibitors (jakinibs) now represents a major new therapeutic advance. We are still in the first decade since these drugs were approved and there is still much to be learned about the mechanisms of action of these drugs and the practical use of these agents. Herein we will review cytokines that do, and just as importantly, do not signal by JAKs, as well as explain how this relates to both efficacy and side effects in various diseases. We will review new, next-generation selective jakinibs, as well as the prospects and challenges ahead in targeting JAKs.Peer reviewe

    Next generation proteomics with drug sensitivity screening identifies sub-clones informing therapeutic and drug development strategies for multiple myeloma patients

    Get PDF
    With the introduction of novel therapeutic agents, survival in Multiple Myeloma (MM) has increased in recent years. However, drug-resistant clones inevitably arise and lead to disease progression and death. The current International Myeloma Working Group response criteria are broad and make it difficult to clearly designate resistant and responsive patients thereby hampering proteo-genomic analysis for informative biomarkers for sensitivity. In this proof-of-concept study we addressed these challenges by combining an ex-vivo drug sensitivity testing platform with state-of-the-art proteomics analysis. 35 CD138-purified MM samples were taken from patients with newly diagnosed or relapsed MM and exposed to therapeutic agents from five therapeutic drug classes including Bortezomib, Quizinostat, Lenalidomide, Navitoclax and PF-04691502. Comparative proteomic analysis using liquid chromatography-mass spectrometry objectively determined the most and least sensitive patient groups. Using this approach several proteins of biological significance were identified in each drug class. In three of the five classes focal adhesion-related proteins predicted low sensitivity, suggesting that targeting this pathway could modulate cell adhesion mediated drug resistance. Using Receiver Operating Characteristic curve analysis, strong predictive power for the specificity and sensitivity of these potential biomarkers was identified. This approach has the potential to yield predictive theranostic protein panels that can inform therapeutic decision making.Peer reviewe
    • …
    corecore